skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Su, Changjian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nakada’s colored hook formula is a vast generalization of many important formulae in combinatorics, such as the classical hook length formula and the Peterson’s formula for the number of reduced expressions of minuscule Weyl group elements. In this paper, we use cohomological properties of Segre–MacPherson classes of Schubert cells and varieties to prove a generalization of a cohomological version of Nakada’s formula, in terms of smoothness properties of Schubert varieties. A key ingredient in the proof is the study of a decorated version of the Bruhat graph. Weights of the paths in this graph give the terms in the generalized Nakada’s formula, and the summation over all paths is equal to the equivariant multiplicity of the Chern–Schwartz–MacPherson class of a Richardson variety. Among the applications we mention an algorithm to calculate structure constants of multiplications of Segre–MacPherson classes of Schubert cells, and a skew version of Nakada–Peterson’s formula. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Free, publicly-accessible full text available December 31, 2025